3.1119 \(\int \frac{c+d x^2}{(e x)^{7/2} (a+b x^2)^{7/4}} \, dx\)

Optimal. Leaf size=104 \[ \frac{8 \sqrt [4]{a+b x^2} (8 b c-5 a d)}{15 a^3 e^3 \sqrt{e x}}-\frac{2 (8 b c-5 a d)}{15 a^2 e^3 \sqrt{e x} \left (a+b x^2\right )^{3/4}}-\frac{2 c}{5 a e (e x)^{5/2} \left (a+b x^2\right )^{3/4}} \]

[Out]

(-2*c)/(5*a*e*(e*x)^(5/2)*(a + b*x^2)^(3/4)) - (2*(8*b*c - 5*a*d))/(15*a^2*e^3*Sqrt[e*x]*(a + b*x^2)^(3/4)) +
(8*(8*b*c - 5*a*d)*(a + b*x^2)^(1/4))/(15*a^3*e^3*Sqrt[e*x])

________________________________________________________________________________________

Rubi [A]  time = 0.0518137, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {453, 273, 264} \[ \frac{8 \sqrt [4]{a+b x^2} (8 b c-5 a d)}{15 a^3 e^3 \sqrt{e x}}-\frac{2 (8 b c-5 a d)}{15 a^2 e^3 \sqrt{e x} \left (a+b x^2\right )^{3/4}}-\frac{2 c}{5 a e (e x)^{5/2} \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)/((e*x)^(7/2)*(a + b*x^2)^(7/4)),x]

[Out]

(-2*c)/(5*a*e*(e*x)^(5/2)*(a + b*x^2)^(3/4)) - (2*(8*b*c - 5*a*d))/(15*a^2*e^3*Sqrt[e*x]*(a + b*x^2)^(3/4)) +
(8*(8*b*c - 5*a*d)*(a + b*x^2)^(1/4))/(15*a^3*e^3*Sqrt[e*x])

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 273

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m, n, p}, x] && ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[p, -1]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{c+d x^2}{(e x)^{7/2} \left (a+b x^2\right )^{7/4}} \, dx &=-\frac{2 c}{5 a e (e x)^{5/2} \left (a+b x^2\right )^{3/4}}-\frac{(8 b c-5 a d) \int \frac{1}{(e x)^{3/2} \left (a+b x^2\right )^{7/4}} \, dx}{5 a e^2}\\ &=-\frac{2 c}{5 a e (e x)^{5/2} \left (a+b x^2\right )^{3/4}}-\frac{2 (8 b c-5 a d)}{15 a^2 e^3 \sqrt{e x} \left (a+b x^2\right )^{3/4}}-\frac{(4 (8 b c-5 a d)) \int \frac{1}{(e x)^{3/2} \left (a+b x^2\right )^{3/4}} \, dx}{15 a^2 e^2}\\ &=-\frac{2 c}{5 a e (e x)^{5/2} \left (a+b x^2\right )^{3/4}}-\frac{2 (8 b c-5 a d)}{15 a^2 e^3 \sqrt{e x} \left (a+b x^2\right )^{3/4}}+\frac{8 (8 b c-5 a d) \sqrt [4]{a+b x^2}}{15 a^3 e^3 \sqrt{e x}}\\ \end{align*}

Mathematica [A]  time = 0.0262971, size = 66, normalized size = 0.63 \[ \frac{x \left (-6 a^2 \left (c+5 d x^2\right )+8 a b x^2 \left (6 c-5 d x^2\right )+64 b^2 c x^4\right )}{15 a^3 (e x)^{7/2} \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)/((e*x)^(7/2)*(a + b*x^2)^(7/4)),x]

[Out]

(x*(64*b^2*c*x^4 + 8*a*b*x^2*(6*c - 5*d*x^2) - 6*a^2*(c + 5*d*x^2)))/(15*a^3*(e*x)^(7/2)*(a + b*x^2)^(3/4))

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 62, normalized size = 0.6 \begin{align*} -{\frac{2\,x \left ( 20\,abd{x}^{4}-32\,{b}^{2}c{x}^{4}+15\,{a}^{2}d{x}^{2}-24\,abc{x}^{2}+3\,{a}^{2}c \right ) }{15\,{a}^{3}} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{4}}} \left ( ex \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)/(e*x)^(7/2)/(b*x^2+a)^(7/4),x)

[Out]

-2/15*x*(20*a*b*d*x^4-32*b^2*c*x^4+15*a^2*d*x^2-24*a*b*c*x^2+3*a^2*c)/(b*x^2+a)^(3/4)/a^3/(e*x)^(7/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac{7}{4}} \left (e x\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(7/2)/(b*x^2+a)^(7/4),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)/((b*x^2 + a)^(7/4)*(e*x)^(7/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.05389, size = 176, normalized size = 1.69 \begin{align*} \frac{2 \,{\left (4 \,{\left (8 \, b^{2} c - 5 \, a b d\right )} x^{4} - 3 \, a^{2} c + 3 \,{\left (8 \, a b c - 5 \, a^{2} d\right )} x^{2}\right )}{\left (b x^{2} + a\right )}^{\frac{1}{4}} \sqrt{e x}}{15 \,{\left (a^{3} b e^{4} x^{5} + a^{4} e^{4} x^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(7/2)/(b*x^2+a)^(7/4),x, algorithm="fricas")

[Out]

2/15*(4*(8*b^2*c - 5*a*b*d)*x^4 - 3*a^2*c + 3*(8*a*b*c - 5*a^2*d)*x^2)*(b*x^2 + a)^(1/4)*sqrt(e*x)/(a^3*b*e^4*
x^5 + a^4*e^4*x^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)/(e*x)**(7/2)/(b*x**2+a)**(7/4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac{7}{4}} \left (e x\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(7/2)/(b*x^2+a)^(7/4),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)/((b*x^2 + a)^(7/4)*(e*x)^(7/2)), x)